Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions
نویسندگان
چکیده
BACKGROUND Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM). It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. RESULTS Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA) and 5 heterozygous (GA) PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses.Gene expression analysis revealed 129 genes significantly modulated (p < 0.05). The following genes were up-regulated over 2 fold: IL18, CTSS, LUM, CD44, FN1, GST01. The most down-regulated genes were the following: mitochondrial tRNA, SLC2A2, PRKCalpha, VEGFalpha. Data mining analysis showed that protein synthesis, apoptosis, cellular movement, growth and proliferation were the main cellular functions significantly associated with the modulated genes (p < 0.05). Several up-regulated genes, especially IL18, revealed a severe muscular inflammation in PSSM muscles. The up-regulation of glycogen synthase kinase-3 (GSK3beta) under its active form could be responsible for glycogen synthase (GYS1) inhibition and hypoxia-inducible factor (HIF1alpha) destabilization. CONCLUSION The main disorders observed in PSSM muscles could be related to mitochondrial dysfunctions, glycogenesis inhibition and the chronic hypoxia of the PSSM muscles.
منابع مشابه
A review of equine muscle disorders.
Muscle disorders are a common cause of disability in horses. For many years, clinical manifestations such as muscle pain, exercise intolerance, weakness, and stiffness were believed to be caused by a single syndrome. However, in the past years a broad spectrum of muscle disorders have been recognized including glycogen and polysaccharide storage myopathies, malignant hyperthermia, mitochondrial...
متن کاملBlockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model
Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...
متن کاملHistochemical And Electron Microscopic Diagnosis Of Mitochondrial Myopathy: The First Case Report From Iran
Muscle tissue, skeletal muscle as well as cardiac muscle, is commonly affected in mitochondrial disorders. One explanation for this observation is that muscle tissue has a high-energy demand and therefore is more sensitive to a deficiency of mitochondrial energy production than some other tissues. In mitochondrial disorders, skeletal muscle tissue may be affected primarily by defective respi...
متن کاملInducible metabolic adaptation promotes mesenchymal stem cell therapy for ischemia: a hypoxia-induced and glycogen-based energy prestorage strategy.
OBJECTIVE Ischemic tissue is an environment with limited oxygen and nutrition availability. The poor retention of mesenchymal stem cells (MSC) in ischemic tissues greatly limits their therapeutic potential. The aim of this study was to determine whether and how inducible metabolic adaptation enhances MSC survival and therapy under ischemia. APPROACH AND RESULTS MSC were subjected to glycogen ...
متن کاملEvaluation of β-actin as a Reference Gene for Comparative Expression Analysis of Equine Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells by qRT-PCR
Background Bone marrow and adipose tissue are two main sources of mesenchymal stem cells (MSCs). Some of studies suggest that there are some differences in gene expression profile of MSCs-derived from various tissues. To investigate gene expression profile by qRT-PCR, an appropriate reference gene with stable expression level should be chosen for normalizing data. This study was designed to e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Veterinary Research
دوره 5 شماره
صفحات -
تاریخ انتشار 2009